Multi-view Clustering with Adaptively Learned Graph

نویسندگان

  • Hong Tao
  • Chenping Hou
  • Jubo Zhu
  • Dongyun Yi
چکیده

Multi-view clustering, which aims to improve the clustering performance by exploring the data’s multiple representations, has become an important research direction. Graph based methods have been widely studied and achieve promising performance for multi-view clustering. However, most existing multi-view graph based methods perform clustering on the fixed input graphs, and the results are dependent on the quality of input graphs. In this paper, instead of fixing the input graphs, we propose Multi-view clustering with Adaptively Learned Graph (MALG), learning a new common similarity matrix. In our model, we not only consider the importance of multiple graphs from view level, but also focus on the performance of similarities within a view from sample-pair level. Sample-pair-specific weights are introduced to exploit the connection across views in more depth. In addition, the obtained optimal graph can be partitioned into specific clusters directly, according to its connected components. Experimental results on toy and real-world datasets demonstrate the efficacy of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Adaptive Neighbours and Metric Learning for Multi-view Subspace Clustering

Due to the existence of various views or representations in many real-world data, multi-view learning has drawn much attention recently. Multi-view spectral clustering methods based on similarity matrixes or graphs are pretty popular. Generally, these algorithms learn informative graphs by directly utilizing original data. However, in the real-world applications, original data often contain noi...

متن کامل

Beyond Low-Rank Representations: Orthogonal Clustering Basis Reconstruction with Optimized Graph Structure for Multi-view Spectral Clustering

Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentall...

متن کامل

Self-weighted Multiview Clustering with Multiple Graphs

In multiview learning, it is essential to assign a reasonable weight to each view according to the view importance. Thus, for multiview clustering task, a wise and elegant method should achieve clustering multiview data while learning the view weights. In this paper, we propose to explore a Laplacian rank constrained graph, which can be approximately as the centroid of the built graph for each ...

متن کامل

Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering

Multi-view spectral clustering, which aims at yielding an agreement or consensus data objects grouping across multi-views with their graph laplacian matrices, is a fundamental clustering problem. Among the existing methods, Low-Rank Representation (LRR) based method is quite superior in terms of its effectiveness, intuitiveness and robustness to noise corruptions. However, it aggressively tries...

متن کامل

Large-Scale Multi-View Spectral Clustering via Bipartite Graph

In this paper, we address the problem of large-scale multi-view spectral clustering. In many real-world applications, data can be represented in various heterogeneous features or views. Different views often provide different aspects of information that are complementary to each other. Several previous methods of clustering have demonstrated that better accuracy can be achieved using integrated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017